ANOMALOUS FRACTIONATION OF OXYGEN ISOTOPES IN PHOTOCHEMICAL REACTIONS

A THESIS SUBMITTED TO GUJARAT UNIVERSITY AHMEDABAD

For The Degree Of Doctor Of Philosophy In Physics

By

SUBRATA CHAKRABORTY

PHYSICAL RESEARCH LABORATORY Navrangpura, Ahmedabad India 380 009

November 2002

CERTIFICATE

I hereby declare that the work presented in this thesis is original and has not formed the basis for the award of any degree or diploma by any University or Institution.

> Subrata Chakraborty (Author)

Certified By:

Prof. S.K. Bhattacharya (Thesis Supervisor)

Physical Research Laboratory Ahmedabad INDIA

Dedicated to My Parents

..... Their dreams are my strength

Acknowledgements

The four year long voyage through the rough seas of research has come to an end. Unforgettable moments of agony and ecstasy, anguish and elation. Everything molded into a sense of success and accomplishment. It is a pleasant aspect that I have now the opportunity to express my gratitude for all who made this journey smooth and enjoyable.

The "Planetary and Geosciences Division", an organized research group, specialized in geo-cosmo-chemistry within Physical Research Laboratory, provided an unparalleled research environment and ambience needed for a balanced development of one's research aptitude and acumen. I feel privileged to be a part of this esteemed institution during my formative period.

Financial assistance in the form of fellowship and research grants from the Department of Space (DOS) is sincerely acknowledged.

I express my sincere gratitude to my mentor, Prof. S.K. Bhattacharya. His overly enthusiasm coupled with an integral view on research and an everlasting smile has made a deep impression on me. I am indebted to him for the encouragement and the freedom I enjoyed throughout. He has given my career in science a purpose and a meaning full direction.

I am grateful to Prof. Krishnaswami for correcting some of the manuscripts and sharing his critical comments and suggestions, which helped to make further improvements. Besides, I would like to thank Profs. Soma, Prof. Goswami, Prof. Ramesh, Prof. Sarin, Dr. Murty and Dr. Kanchan for their constructive inputs at different stages of my research. I have deep appreciation for Dr. P.N. Shukla and Dr. G. Srinivasan for their concern and encouraging words.

Sincere thanks are due to Prof. Sheorey, Dr. P. Sharma and other academic committee members who spent their time to critically review my work from time to time.

I would like to express my sincere thanks to Jani_ji and Rao_ji for their support, encouragement and assistance. My heartfelt thanks are due to Ravi Bhusan and R.D. Deshpandey for proof reading this thesis.

No amount of word is enough to express my regards for Shiva and Kurup for their help in building the vacuum line for my experimental work. I am also grateful to the staffmembers of Library, Computer center, Workshop, Maintenance and Liquid Nitrogen facilities of PRL for their promptness and friendly attitude.

It's a golden opportunity to remember my STAILIAN (members of STAIL) brothers: Ghosh (who taught me how to handle vacuum-line and showed me the path of hard work), Ashish_da (for his sincere advise whenever I needed), Supriyo_da (for fruitful scientific discussions), Aninda (who taught me: "think big, dream big"), Rajesh and Prasanta. I am indebted to all these people for creating a jovial atmosphere in the lab.

I cherished every moment of my stay with JAPS (Jitti-Aninda-Pradeep) group with whom I shared my dreams. I am thankful to the PRL student-family for creating a 'home away from home' for me. I feel blessed to have such friends like you. I also extend my gratitude towards the members of PRL Soccer Club, who added an extra color to my life every weekend.

I am at dearth of words to express my gratitude to my parents and family members, who have been patient, supportive and caring. This thesis is indeed a realization of their dream.

Needless to say that there were times of hard feeling and war of words too. But it only taught me to be more patient, considerate and shaped me to face the more difficult challenges in future.

I end these dry words of appreciation with a deep sense of gratitude and obligation, and with a hope to reciprocate in due course.

Thanks Subrata Chakraborty 20th November 2002

CONTENTS

CHAPTER I: INTRODUCTION		1 – 16		
4.1	Isotopic Fractionation		2	
	1.1.1	Mass Independent Isotopic Fractionation	3	
	1.1.2	The Early Solar System	4	
	1.1.3	Earth and Other Planetary Atmosphere	4	
	1.1.4	Laboratory Observations	5	
	1.1.5	Accurate Expressions of Isotopic Fractionation	5	
1.2	Objec	Objective of the Present Study		
1.3	Ozone Formation Mechanism		8	
	1.3.1	Isotopic Enrichment in Ozone	9	
	1.3.2	Relative Rate Coefficient of Different Ozone		
		Formation Channels	9	
	1.3.3	Non-RRKM Based Model	10	
		1.3.3.1 Non-Statistical η-Effect	12	
		1.3.3.2 Weak Collisions for Deactivation	13	
		1.3.3.3 Partitioning Effect in Dissociation Channels	13	
	1.3.4	Interlink Between RRKM Based Theory and Rate		
		Constants	14	
1.4	Isotopic Measurements of Stratospheric Ozone		14	
	1.4.1	Spectroscopic (Optical) Measurements	15	
1.5	Scope	e of the Present Thesis	16	
CHAPT	ER II: O	ZONE FORMATION: PRESSURE DEPENDENCE	17-36	
4.1	Introduction		18	
	2.1.1	Laboratory Experiments	18	
	2.1.2	Motivation Behind the Present Experiment	19	
2.2	About the Experiment		20	
	2.2.1	Experimental Configuration	20	
	2.2.2	Experimental Procedure	21	
2.3	Resul	ts	23	
2.4	Discussion		27	
	2.4.1	Pressure Dependence in Range I and Gao-Marcus		

		Theory	27
	2.4.2	Significant Effect of Secondary Processes in	
		Enrichment	28
	2.4.3	Experimental Results of UCSD	29
	2.4.4	Dissociation Effect in the Pressure Range II	31
	2.4.5	Enrichment in Range III	33
	2.4.6	Effect of Nitrogen in the System	33
	2.4.7	Amount Dependence in Enrichment of Ozone	33
2.5	Concl	usion	36

CHAPTER III: OZONE DISSOCIATION: PHOTO-DISSOCIATION

	A	ND SURFACE INDUCED DISSOCIATION	37 - 64
3.1	Introd	troduction	
3.3	Part A	: Photo-Dissociation of Ozone	38
	3.3.1	Motivation	38
	3.3.2	Experimental Procedure	39
	3.3.3	Results	40
	3.3.4	Discussion	47
		3.2.4.1 Photo-induced Kinetic Isotope Effect	47
		3.2.4.2 Photo-Dissociation in the Hartley Band	49
		3.2.4.3 Photo-Dissociation in the Chappuis Band	49
		3.2.4.4 Mass Independent Isotopic Fractionation	
		During Photo-Dissociation in Hartley Band	50
		3.2.4.5 Source of Mass Independent Isotopic	
		Fractionation in Hartley Band Photo-	
		Dissociation	52
		3.2.4.6 Non-RRKM Effect During O ₃ [*] Dissociation	53
	3.2.5	Conclusion of Photo-Dissociation Study	55
3.3	Part B	: Surface Induced Dissociation of Ozone	56
	3.3.1	Motivation	56
	3.3.2	Experimental Procedure	56
	3.3.3	Results	58
	3.3.4	Discussion	61
	3.3.5	Conclusion of Surface Induced Dissociation Study	63

CHAPTER IV: Isotopic Exchange: $CO_2 - O(^1D)$		65 – 91		
4.1	Introduction		66	
	4.1.1	Anomalous Oxygen Isotopic Composition of		
		Stratospheric CO ₂	66	
	4.1.2	Mechanism of the Isotopic Exchange Between		
		CO_2 and $O(^1D)$	66	
	4.1.3	Previous Experimental Studies	68	
	4.1.4	Numerical Model Studies	69	
	4.1.5	Motivation Behind the Present Work	70	
4.2	About the Experiment		71	
	4.2.1	Preparation of O ₃ of Fixed Isotopic Composition	71	
	4.2.2	Preparation of CO ₂ and O ₃ of Different Isotopic		
		Compositions	72	
	4.2.3	$CO_2 - O(^1D)$ Isotopic Exchange	72	
	4.2.4	Isotopic Measurement of Oxygen and CO ₂	73	
	4.2.5	Test of Recovery Yield of CO_2 and Blank $\delta^{13}C$	75	
4.3	Results		75	
4.4	Discussion		80	
	4.4.1	Isotopic Composition of O(¹ D)	80	
	4.4.2	Failure of Two-Component Mixing	81	
	4.4.3	Previous Results in the Light of Present Experiment	83	
	4.4.4	Supportive Evidence for Preferential ¹⁷ O Transfer	85	
	4.4.5	Results of Set II Experiments: Connection to the		
		Stratosphere	85	
	4.4.6	Preferential ¹⁷ O Transfer to CO ₂	87	
	4.4.7	A Simple Box Model Calculation	89	
4.5	Concl	usion	91	
CHAPT	ER V: Si	TRATOSPHERIC IMPLICATIONS AND FUTURE DIRECTION	<i>92 – 108</i>	
4.1	Introd	Introduction		
5.2	Stratospheric Implications		93	
	5.2.1	Isotopic Enrichment Profile ($\Delta \delta^{18}$ O) of Stratospheric		

		Ozone	96
	5.2.2	Altitudinal Variation: Previous Explanation and	
		Present Proposition	97
	5.2.3	Application of Altitudinal Variation of Isotopic	
		Enrichment in ¹⁸ O	100
	5.2.4	Altitudinal Variation in Slope of $\Delta \delta^{17}$ O - $\Delta \delta^{18}$ O	
		Correlation Plot	100
5.3	Oxyge	en Isotopic Composition of Stratospheric CO ₂	101
5.4	Role of $O(^{1}D)$ in the Stratosphere		103
	5.4.1	Isotopic Composition of O(¹ D)	104
	5.4.2	Interaction of O(¹ D) With Other Oxygen	
		Bearing Molecules	106
	5.4.3	Importance of $CO_2 - O(^1D)$ Exchange	106
5.5	Future	e Laboratory Studies	107
Epilogue	2		109
Bibliogr	APHY		111
Appendix			118

123

LIST OF PUBLICATIONS