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EPILOGUE 
 

Despite of more than two decades of extensive research on oxygen isotopic 

fractionation in ozone isotopomers, there are still a number of unresolved problems 

related to fundamental fractionation mechanism during its formation and dissociation. 

Moreover, there are several unanswered issues regarding stratospheric ozone and its 

direct or indirect heavy isotope transfer to other oxygen containing stratospheric trace 

species.      

The present thesis explores the phenomenon of mass independent fractionation in 

light of the several experimental processes involving ozone and its interaction with other 

oxygen containing molecules like CO2 to throw light on some of these issues.  

In the course of this work, a number of experiments were devised in a way such 

that some of the fundamental fractionation mechanisms related to ozone as well as some 

specific stratospheric issues (e.g. altitudinal variation of enrichment in stratospheric 

ozone, relative variation of enrichment in 17O and 18O of ozone in the upper stratosphere 

etc.) could be addressed. Some of the important findings of this study are the following: 

Dissociation of ozone contributes significantly in the isotopic enrichment of ozone 

while recycling is allowed to take place during formation through oxygen photolysis at 

low pressure (< 50 torr). Over and above the dissociation effect, the amount of ozone 

produced has also a role in enrichment process. The data are explained easily by 

introducing a parameter called “turn-over time” (τ = O3 reservoir amount / rate of O3 

dissociation) which clarifies the role of dissociative enrichment from the perspective of a 

Rayleigh type of process. An effort is made to explain and predict the altitudinal 

enrichment variation of stratospheric ozone with the help of this parameter.  

It is established that the isotopic fractionations during photo-dissociation of ozone 

in Hartley (peak around 254 nm) and Chappuis band (peak around 600 nm) are distinctly 

different. The former shows a mass independent character while the latter is strictly a 

mass dependent process. Further investigations on Hartley band dissociation decipher the 

fact that pure UV dissociation is a mass independent process, which proceeds with equal 

enrichment in 17O and 18O in the left-over ozone. An explanation for this dissociation 

process is presented in the context of Gao-Marcus theory.      
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Epilogue 

  An interesting phenomenon is observed during ozone dissociation by its 

interaction with a surface. The origin of the mass independent character of this process is 

hypothesized by non-statistical breakdown of short-lived complex O3
* (formed by 

adsorption of O3 in the wall). 

During the isotopic exchange between the ozone photolysis product O(1D) and 

CO2, the δ17O and δ18O of evolved CO2 defines a line of slope 1.7 (with initial O3 and 

CO2 compositions identical to atmospheric composition) similar to the one observed for 

stratospheric CO2. The slope of the line changes with the change of initial CO2 

composition and establishes the fact that the isotopic transfer favors 17O relative to 18O. It 

is postulated that a process similar to resonant absorption affects the quenching of O(1D) 

such that 17O containing isotopomers of CO2 is favored during the singlet-triplet transition 

of the CO3
* complex during its breakdown to O-atom and CO2 molecule.   

 In summary, this work is an effort to enhance our understanding of the mass 

independent isotopic fractionation processes.  
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Appendix 

APPENDIX  
 

Physical Data for Ozone as found in literature: 
(Determined by microwave spectroscopy) 

 
Table A1. Physical quantities of ozone molecule. 
                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantity Value 
Density (Gas) 2.133 g/L at 273.15 K 
Density (Liquid) 1.614 g/cm-3 at 77.75 K 
Melting Point 80.0  K 
Boiling Point  161.80 K 
Critical Temperature  261.05 K 
Critical Pressure 53.8 atm 
Critical Volume  89 cm3/mol 
Heat of Formation  34.4 kcal/mole (298.15 K) 
Heat of Vaporization  4.88 kJ/g 
Bond Length 1.2716 Å 
Molecular Angle  117.47 ° 
Point Group  C2v 

Figure A1. A sc

 

ν1: Symmetric 
       Stretching

ν3: Asymmetric 
       Stretching

ν2: Bending

 

hematic representation of three types of vibration in ozone molecule. 
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Appendix 

Table A2. The calculated and measured vibrational frequencies of different ozone 
isotopomers (taken from Hathorn and Marcus, 2001). 
 

Calculated (cm-1) Measured (cm-1) Isotopomers Mass 
ν1 ν2 ν3 ν1 ν2 ν3 

16O16O16O 48 1103.9 701.3 1043.3 1103.1 700.9 1042.1 
17O17O17O 51 1071.0 608.3 1012.2 1070.9  1012.2 
18O18O18O 54 1040.8 661.2 983.7 1041.6 661.5 984.8 
16O16O17O 49 1095.6 692.7 1037.0 1095.7 692.4 1035.7 
16O17O16O 49 1088.2 697.3 1025.0 1087.8 697.1 1024.4 
16O16O18O 50 1088.1 685.0 1031.4 1090.4 684.6 1028.1 
16O18O16O 50 1074.2 693.5 1008.4 1074.3 693.3 1008.4 
17O17O16O 50 1079.6 688.9 1018.6    
17O16O17O 50 1087.2 684.0 1030.7    
17O17O18O 52 1063.3 672.5 1006.4    
17O18O17O 52 1056.5 676.7 995.4    
18O18O16O 52 1057.5 677.7 996.1 1060.7 677.5 993.9 
18O16O18O 52 1072.3 667.9 1019.4 1072.2 668.1 1019.4 
18O18O17O 53 1048.7 669.0 989.5    
18O17O18O 53 1055.6 664.5 1000.6    
16O17O18O 51 1071.9 681.3 1012.9    
16O18O17O 51 1065.4 685.2 1001.9    
17O16O18O 51 1079.8 676.1 1025.1    

 
 
Calculated Fractionation of Ozone at Different Wave Lengths Following Miller-
Yung Model 

 

The absorption cross-sections of 48O3 and 50O3 are slightly different which can 

cause isotopic fractionation due to photo-dissociation. This can be calculated using 

Miller-Yung model (2000). First, the zero point energy difference (∆ZPE) between 48O3 

and 50O3 (16O18O16O + 16O16O18O) is calculated using the vibrational frequencies of ozone 

isotopomers, where ∆ZPE is given by: 

(∆ZPE)s = ZPE (16O16O16O) – ZPE (16O18O16O) 

and,     (∆ZPE)a = ZPE (16O16O16O) – ZPE (16O16O18O) 

where, ‘s’ and ‘a’ subscripts denote symmetric and asymmetric case respectively. 

Now, ZPE = ½ (ν1 + ν2 + ν3) (where ν’s are vibrational frequencies of the ozone 

molecule expressed in cm-1 unit).  Using the vibrational frequencies from Hathorn and 

Marcus (2001), the calculated ∆ZPE values are, 

     (∆ZPE)a = -22.0 cm-1 

     (∆ZPE)s = -36.2 cm-1 
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The 18O-enrichment in ozone (i.e. the relative difference in absorption rate) can be written 

as, (σ48 - σ50)/σ48 × 1000 (‰), where σ48 and σ50 at a given wave number (ν/c) are the 

absorption cross- sections of 48O3 and 50O3 respectively. σ48 and σ50 are related by the 

equation,   

σ50 (ν/c + ∆ZPE) =  σ48 (ν/c) 

For ozone dissociation at 253.7 nm: 

Using the ozone absorption cross-section data (DeMore et al., 1997) given below, a 

function of the form: 

















 −

−=
2)(

5.0exp
b

xc
a oν

σ was fitted. 

ν/c (cm-1) σ (× 10-20 cm2) of 48O3  

41779.98  797 

41279.98  900 

40779.94  1000 

40279.88  1080 

39779.86  1130 

39279.86  1150 

38779.90  1120 

38279.85  1060 

37779.78  965 

37279.79  834 

36779.76  692 

 

The corresponding fit-parameters for 48O3 are given below: 

Parameters Values 

a 1147.9544 

b 2684.8433 

xo 39386.9557 

 

Using these parameters, σ48 and σ50 at 253.7 nm (≡ 39416.63 cm-1) was calculated and we 

obtain:   (∆σ)a = σ48 - σ50 ≈ - 0.065 × 10-20 cm2  

therefore,    (δ18O)a = (∆σ)a /σ48 × 1000 ≈ - 0.056 ‰. 

Similarly,  (∆σ)s = σ48 - σ50 ≈ - 0.067 × 10-20 cm2  

and,   (δ18O)s = (∆σ)s /σ48 × 1000 ≈ - 0.058 ‰. 
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finally,              (δ18O)total = 1/3 (δ18O)s + 2/3 (δ18O)a ≈ - 0.06 ‰ 

Therefore the left-over ozone will be depleted by 0.06 ‰. 
 
For ozone dissociation at 520: 

The absorption cross-section data around 520 nm are the following: 

 
ν/c (cm-1) σ (× 10-23 cm2) of 48O3 
19442.39 162.3 
19337.50 173.9 
19233.73 182.6 
19131.07 191.3 
19080.33 205.8 
19029.50 217.4 

 
A function of the form:  σ = a × (ν/c)3 + b × (ν/c)2 +c × (ν/c) + d is fitted to the above 

data set and obtained the following parameters: 

 
Parameters Values 

a -1.32367975047 × 10-6 

b 7.65896904133 × 10-2 

c - 1.47725859141 × 103 

d 9.49838314502 × 106 

 
Using these parameters, σ48 and σ50 at 520 nm (≡ 19230.77 cm-1) was calculated and we 

obtain:   (∆σ)a = σ48 - σ50 ≈ -1.90 × 10-23 cm2  

therefore,    (δ18O)a = (∆σ)a /σ48 × 1000 ≈ -1.90 / 181.9 = -10.45 ‰. 

Similarly,  (∆σ)s = σ48 - σ50 ≈ -3.28 × 10-23 cm2  

and,   (δ18O)s = (∆σ)s /σ48 × 1000 ≈ -3.28 / 181.9 × 1000 = -18.05 ‰. 

finally,              (δ18O)total = 1/3 (δ18O)s + 2/3 (δ18O)a ≈ -13.0 ‰ 

Therefore, during photo-dissociation of ozone at 520 nm, the left-over ozone will be 

depleted by 13.0 ‰. 
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For ozone dissociation at 630 nm: 

The absorption cross-section data around 630 nm are the following: 

 ν/c (cm-1) σ (× 10-23 cm2) of 48O3 
16048.53 385.5 
15976.99 373.9 
15906.09 359.4 
15836.07 342 
15766.4 330.4 
15731.68 315.9 

 
 
 
 
 
 
 
 
 
A function of the form:   

σ = a × (ν/c)5 + b × (ν/c)4 + c × (ν/c)3 + d × (ν/c)2 + e × (ν/c) + f 

is fitted to the above data set and obtained the following parameters: 

Parameters Values 

a 3.24118687744 × 10-10 

b - 2.57631099424 × 10-5 

c 8.19118920805 × 10-1 

d - 1.30214725893 × 104 

e 1.03499373478 × 108 

f - 3.29055995954 × 1011 

 
Using these parameters, σ48 and σ50 at 630 nm (≡ 15873.02 cm-1) was calculated and we 

obtain:    (∆σ)a = σ48 - σ50 ≈ 5.36 × 10-23 cm2  

therefore,    (δ18O)a = (∆σ)a /σ48 × 1000 ≈ 5.36 / 359.2 = 14.9 ‰. 

Similarly,  (∆σ)s = σ48 - σ50 ≈  8.33 × 10-23 cm2  

and,   (δ18O)s = (∆σ)s /σ48 × 1000 ≈ 8.33 / 359.2 × 1000 =  23.18 ‰. 

finally,                          (δ18O)total = 1/3 (δ18O)s + 2/3 (δ18O)a ≈ 17.7 ‰ 

Therefore, during photo-dissociation of ozone at 630 nm, the left-over ozone will be 

enriched by 17.7 ‰. 
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